Here is a public domain implementation of AES written in C. This should compile in most standard compilers.
This is free and unencumbered software released into the public domain.
Aes.h
//////////////////////////////////////////////////////////////////////////////// // CryptLib_Aes // // Implementation of AES block cipher. Originally written by Kokke // (https://github.com/kokke). Modified by WaterJuice retaining Public Domain // license. // // AES is a block cipher that operates on 128 bit blocks. Encryption and // Decryption routines use an AesContext which must be initialised with the key // An AesContext can be initialised with a 128, 192, or 256 bit key. Use the // AesInitialise[n] functions to initialise the context with the key. Once an // AES context is initialised its contents are not changed by the encrypting // and decrypting functions. A context only needs to be initialised once for // any given key and the context may be used by the encrypt/decrypt functions // in simultaneous threads. All operations are performed byte wise and this // implementation works in both little and endian processors. There are no // alignment requirements with the keys and data blocks. // // This is free and unencumbered software released into the public domain // November 2017 waterjuice.org //////////////////////////////////////////////////////////////////////////////// #pragma once //////////////////////////////////////////////////////////////////////////////// // IMPORTS //////////////////////////////////////////////////////////////////////////////// #include //////////////////////////////////////////////////////////////////////////////// // TYPES //////////////////////////////////////////////////////////////////////////////// #define AES_KEY_SIZE_128 16 #define AES_KEY_SIZE_192 24 #define AES_KEY_SIZE_256 32 #define AES_BLOCK_SIZE 16 // AesContext - This must be initialised using AesInitialise128, // AesInitialise192 or AesInitialise256. Do not modify the contents of this // structure directly. typedef struct { uint32_t KeySizeInWords; uint32_t NumberOfRounds; uint8_t RoundKey[240]; } AesContext; //////////////////////////////////////////////////////////////////////////////// // PUBLIC FUNCTIONS //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // AesInitialise128 // // Initialises an AesContext with a 128 bit key. //////////////////////////////////////////////////////////////////////////////// void AesInitialise128 ( uint8_t const Key [AES_KEY_SIZE_128], // [in] AesContext* Context // [out] ); //////////////////////////////////////////////////////////////////////////////// // AesInitialise192 // // Initialises an AesContext with a 192 bit key. //////////////////////////////////////////////////////////////////////////////// void AesInitialise192 ( uint8_t const Key [AES_KEY_SIZE_192], // [in] AesContext* Context // [out] ); //////////////////////////////////////////////////////////////////////////////// // AesInitialise256 // // Initialises an AesContext with a 256 bit key. //////////////////////////////////////////////////////////////////////////////// void AesInitialise256 ( uint8_t const Key [AES_KEY_SIZE_256], // [in] AesContext* Context // [out] ); //////////////////////////////////////////////////////////////////////////////// // AesEncrypt // // Performs an AES encryption of one block (128 bits) with the AesContext // initialised with one of the functions AesInitialise[n]. Input and Output can // point to same memory location, however it is more efficient to use // AesEncryptInPlace in this situation. //////////////////////////////////////////////////////////////////////////////// void AesEncrypt ( AesContext const* Context, // [in] uint8_t const Input [AES_BLOCK_SIZE], // [in] uint8_t Output [AES_BLOCK_SIZE] // [out] ); //////////////////////////////////////////////////////////////////////////////// // AesDecrypt // // Performs an AES decryption of one block (128 bits) with the AesContext // initialised with one of the functions AesInitialise[n]. Input and Output can // point to same memory location, however it is more efficient to use // AesDecryptInPlace in this situation. //////////////////////////////////////////////////////////////////////////////// void AesDecrypt ( AesContext const* Context, // [in] uint8_t const Input [AES_BLOCK_SIZE], // [in] uint8_t Output [AES_BLOCK_SIZE] // [out] ); //////////////////////////////////////////////////////////////////////////////// // AesEncryptInPlace // // Performs an AES encryption of one block (128 bits) with the AesContext // initialised with one of the functions AesInitialise[n]. The encryption is // performed in place. //////////////////////////////////////////////////////////////////////////////// void AesEncryptInPlace ( AesContext const* Context, // [in] uint8_t Block [AES_BLOCK_SIZE] // [in out] ); //////////////////////////////////////////////////////////////////////////////// // AesDecryptInPlace // // Performs an AES decryption of one block (128 bits) with the AesContext // initialised with one of the functions AesInitialise[n]. The decryption is // performed in place. //////////////////////////////////////////////////////////////////////////////// void AesDecryptInPlace ( AesContext const* Context, // [in] uint8_t Block [AES_BLOCK_SIZE] // [in out] );
Aes.c
//////////////////////////////////////////////////////////////////////////////// // CryptLib_Aes // // Implementation of AES block cipher. Originally written by Kokke // (https://github.com/kokke). Modified by WaterJuice retaining Public Domain // license. // // This is free and unencumbered software released into the public domain // November 2017 waterjuice.org //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // IMPORTS //////////////////////////////////////////////////////////////////////////////// #include "CryptLib_Aes.h" #include #include //////////////////////////////////////////////////////////////////////////////// // DEFINES //////////////////////////////////////////////////////////////////////////////// // Array holding the intermediate results during decryption. typedef struct { uint8_t state[4][4]; } AesState; //////////////////////////////////////////////////////////////////////////////// // CONSTANTS //////////////////////////////////////////////////////////////////////////////// // AES lookup values static const uint8_t SBOX[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; static const uint8_t RSBOX[256] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; // The round constant word array, RCON[i], contains the values given by // x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) static const uint8_t RCON[11] = { 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 }; //////////////////////////////////////////////////////////////////////////////// // INTERNAL FUNCTIONS //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // KeyExpansion // // This function produces Nb(Nr+1) round keys. The round keys are used in each // round to decrypt the states. //////////////////////////////////////////////////////////////////////////////// static void KeyExpansion ( uint8_t const* Key, // [in] AesContext* Context // [in out] ) { uint32_t i; uint8_t k; uint8_t temp [4]; // Used for the column/row operations // The first round key is the key itself. for( i=0; iKeySizeInWords; i++ ) { Context->RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; Context->RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; Context->RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; Context->RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; } // All other round keys are found from the previous round keys. for( i=Context->KeySizeInWords; i<4*(Context->NumberOfRounds+1); i++ ) { #ifdef _MSC_VER // Visual Studio code analysis complains about the following code // that the index into Context->RoundKey may be -4. This is because // it is concerned that 'i' may be zero. However we know that 'i' // will not be zero as it starts at Context->KeySizeInWords which // is never going to be zero when this function is called (It will // have one of 3 values assigned to it by the initialise functions). // So we need to just suppress the warning here to stop Visual // Studio complaining. #pragma warning( suppress : 6385 ) #endif temp[0] = Context->RoundKey[(i-1) * 4 + 0]; temp[1] = Context->RoundKey[(i-1) * 4 + 1]; temp[2] = Context->RoundKey[(i-1) * 4 + 2]; temp[3] = Context->RoundKey[(i-1) * 4 + 3]; if( 0 == i % Context->KeySizeInWords ) { // This function shifts the 4 bytes in a word to the left once. // [a0,a1,a2,a3] becomes [a1,a2,a3,a0] k = temp[0]; temp[0] = temp[1]; temp[1] = temp[2]; temp[2] = temp[3]; temp[3] = k; // SubWord is a function that takes a four-byte input word and // applies the S-box to each of the four bytes to produce an output // word. temp[0] = SBOX[temp[0]]; temp[1] = SBOX[temp[1]]; temp[2] = SBOX[temp[2]]; temp[3] = SBOX[temp[3]]; temp[0] = temp[0] ^ RCON[i/Context->KeySizeInWords]; } if( AES_KEY_SIZE_256/4 == Context->KeySizeInWords ) { // Only performed with 256 bit sized keys if( 4 == i % Context->KeySizeInWords ) { // Function Subword() temp[0] = SBOX[temp[0]]; temp[1] = SBOX[temp[1]]; temp[2] = SBOX[temp[2]]; temp[3] = SBOX[temp[3]]; } } Context->RoundKey[i*4 + 0] = Context->RoundKey[(i-Context->KeySizeInWords)*4 + 0] ^ temp[0]; Context->RoundKey[i*4 + 1] = Context->RoundKey[(i-Context->KeySizeInWords)*4 + 1] ^ temp[1]; Context->RoundKey[i*4 + 2] = Context->RoundKey[(i-Context->KeySizeInWords)*4 + 2] ^ temp[2]; Context->RoundKey[i*4 + 3] = Context->RoundKey[(i-Context->KeySizeInWords)*4 + 3] ^ temp[3]; } } //////////////////////////////////////////////////////////////////////////////// // AddRoundKey // // This function adds the round key to state. The round key is added to the // state by an XOR function. //////////////////////////////////////////////////////////////////////////////// static void AddRoundKey ( uint32_t Round, // [in] AesContext const* Context, // [in] AesState* State // [in out] ) { uint32_t i; uint32_t j; for( i=0; i<4; i++ ) { for( j=0; j<4; j++ ) { State->state[i][j] ^= Context->RoundKey[(Round*4*4) + (i*4) + j]; } } } //////////////////////////////////////////////////////////////////////////////// // SubBytes // // The SubBytes Function Substitutes the values in the state matrix with // values in an S-box. //////////////////////////////////////////////////////////////////////////////// static void SubBytes ( AesState* State // [in out] ) { uint32_t i; uint32_t j; for( i=0; i<4; i++ ) { for( j=0; j<4; j++ ) { State->state[j][i] = SBOX[ State->state[j][i] ]; } } } //////////////////////////////////////////////////////////////////////////////// // ShiftRows // // The ShiftRows() function shifts the rows in the state to the left. Each row // is shifted with different offset. // Offset = Row number. So the first row is not shifted. //////////////////////////////////////////////////////////////////////////////// static void ShiftRows ( AesState* State // [in out] ) { uint8_t temp; // Rotate first row 1 columns to left temp = State->state[0][1]; State->state[0][1] = State->state[1][1]; State->state[1][1] = State->state[2][1]; State->state[2][1] = State->state[3][1]; State->state[3][1] = temp; // Rotate second row 2 columns to left temp = State->state[0][2]; State->state[0][2] = State->state[2][2]; State->state[2][2] = temp; temp = State->state[1][2]; State->state[1][2] = State->state[3][2]; State->state[3][2] = temp; // Rotate third row 3 columns to left temp = State->state[0][3]; State->state[0][3] = State->state[3][3]; State->state[3][3] = State->state[2][3]; State->state[2][3] = State->state[1][3]; State->state[1][3] = temp; } //////////////////////////////////////////////////////////////////////////////// // xtime // // Performs a calculation //////////////////////////////////////////////////////////////////////////////// static uint8_t xtime ( uint8_t x // [in] ) { return (x<<1) ^ ( ((x>>7) & 1) * 0x1b ); } //////////////////////////////////////////////////////////////////////////////// // MixColumns // // MixColumns function mixes the columns of the state matrix //////////////////////////////////////////////////////////////////////////////// static void MixColumns ( AesState* State // [in out] ) { uint32_t i; uint8_t Tmp; uint8_t Tm; uint8_t t; for( i=0; i<4; i++ ) { t = State->state[i][0]; Tmp = State->state[i][0] ^ State->state[i][1] ^ State->state[i][2] ^ State->state[i][3] ; Tm = State->state[i][0] ^ State->state[i][1] ; Tm = xtime(Tm); State->state[i][0] ^= Tm ^ Tmp ; Tm = State->state[i][1] ^ State->state[i][2] ; Tm = xtime(Tm); State->state[i][1] ^= Tm ^ Tmp ; Tm = State->state[i][2] ^ State->state[i][3] ; Tm = xtime(Tm); State->state[i][2] ^= Tm ^ Tmp ; Tm = State->state[i][3] ^ t ; Tm = xtime(Tm); State->state[i][3] ^= Tm ^ Tmp ; } } //////////////////////////////////////////////////////////////////////////////// // Multiply // // Multiply is used to multiply numbers in the field GF(2^8). This is defined // as a macro. //////////////////////////////////////////////////////////////////////////////// #define Multiply(x, y) \ ( ((y & 1) * x) ^ \ ((y>>1 & 1) * xtime(x)) ^ \ ((y>>2 & 1) * xtime(xtime(x))) ^ \ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \ //////////////////////////////////////////////////////////////////////////////// // InvMixColumns // // InvMixColumns function mixes the columns of the state matrix. //////////////////////////////////////////////////////////////////////////////// static void InvMixColumns ( AesState* State // [in out] ) { uint32_t i; uint8_t a; uint8_t b; uint8_t c; uint8_t d; for( i=0; i<4; i++ ) { a = State->state[i][0]; b = State->state[i][1]; c = State->state[i][2]; d = State->state[i][3]; State->state[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); State->state[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); State->state[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); State->state[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); } } //////////////////////////////////////////////////////////////////////////////// // InvSubBytes // // The InvSubBytes Function Substitutes the values in the state matrix with // values in an S-box. //////////////////////////////////////////////////////////////////////////////// static void InvSubBytes ( AesState* State // [in out] ) { uint32_t i; uint32_t j; for( i=0; i<4; i++ ) { for( j=0; j<4; j++ ) { State->state[j][i] = RSBOX[ State->state[j][i] ]; } } } //////////////////////////////////////////////////////////////////////////////// // InvShiftRows // // Inverse of ShiftRows //////////////////////////////////////////////////////////////////////////////// static void InvShiftRows ( AesState* State // [in out] ) { uint8_t temp; // Rotate first row 1 columns to right temp = State->state[3][1]; State->state[3][1] = State->state[2][1]; State->state[2][1] = State->state[1][1]; State->state[1][1] = State->state[0][1]; State->state[0][1] = temp; // Rotate second row 2 columns to right temp = State->state[0][2]; State->state[0][2] = State->state[2][2]; State->state[2][2] = temp; temp = State->state[1][2]; State->state[1][2] = State->state[3][2]; State->state[3][2] = temp; // Rotate third row 3 columns to right temp = State->state[0][3]; State->state[0][3] = State->state[1][3]; State->state[1][3] = State->state[2][3]; State->state[2][3] = State->state[3][3]; State->state[3][3] = temp; } //////////////////////////////////////////////////////////////////////////////// // EXPORTED FUNCTIONS //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // AesInitialise128 // // Initialises an AesContext with a 128 bit key. //////////////////////////////////////////////////////////////////////////////// void AesInitialise128 ( uint8_t const Key [AES_KEY_SIZE_128], // [in] AesContext* Context // [out] ) { memset( Context, 0, sizeof(*Context) ); Context->KeySizeInWords = AES_KEY_SIZE_128 / sizeof(uint32_t); Context->NumberOfRounds = 10; KeyExpansion( Key, Context ); } //////////////////////////////////////////////////////////////////////////////// // AesInitialise192 // // Initialises an AesContext with a 192 bit key. //////////////////////////////////////////////////////////////////////////////// void AesInitialise192 ( uint8_t const Key [AES_KEY_SIZE_192], // [in] AesContext* Context // [out] ) { memset( Context, 0, sizeof(*Context) ); Context->KeySizeInWords = AES_KEY_SIZE_192 / sizeof(uint32_t); Context->NumberOfRounds = 12; KeyExpansion( Key, Context ); } //////////////////////////////////////////////////////////////////////////////// // AesInitialise256 // // Initialises an AesContext with a 256 bit key. //////////////////////////////////////////////////////////////////////////////// void AesInitialise256 ( uint8_t const Key [AES_KEY_SIZE_256], // [in] AesContext* Context // [out] ) { memset( Context, 0, sizeof(*Context) ); Context->KeySizeInWords = AES_KEY_SIZE_256 / sizeof(uint32_t); Context->NumberOfRounds = 14; KeyExpansion( Key, Context ); } //////////////////////////////////////////////////////////////////////////////// // AesEncrypt // // Performs an AES encryption of one block (128 bits) with the AesContext // initialised with one of the functions AesInitialise[n]. Input and Output can // point to same memory location, however it is more efficient to use // AesEncryptInPlace in this situation. //////////////////////////////////////////////////////////////////////////////// void AesEncrypt ( AesContext const* Context, // [in] uint8_t const Input [AES_BLOCK_SIZE], // [in] uint8_t Output [AES_BLOCK_SIZE] // [out] ) { memcpy( Output, Input, AES_BLOCK_SIZE ); AesEncryptInPlace( Context, Output ); } //////////////////////////////////////////////////////////////////////////////// // AesDecrypt // // Performs an AES decryption of one block (128 bits) with the AesContext // initialised with one of the functions AesInitialise[n]. Input and Output can // point to same memory location, however it is more efficient to use // AesDecryptInPlace in this situation. //////////////////////////////////////////////////////////////////////////////// void AesDecrypt ( AesContext const* Context, // [in] uint8_t const Input [AES_BLOCK_SIZE], // [in] uint8_t Output [AES_BLOCK_SIZE] // [out] ) { memcpy( Output, Input, AES_BLOCK_SIZE); AesDecryptInPlace(Context, Output ); } //////////////////////////////////////////////////////////////////////////////// // AesEncryptInPlace // // Performs an AES encryption of one block (128 bits) with the AesContext // initialised with one of the functions AesInitialise[n]. The encryption is // performed in place. //////////////////////////////////////////////////////////////////////////////// void AesEncryptInPlace ( AesContext const* Context, // [in] uint8_t Block [AES_BLOCK_SIZE] // [in out] ) { uint32_t round = 0; // Add the First round key to the state before starting the rounds. AddRoundKey( 0, Context, (AesState*)Block ); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr-1 rounds are executed in the loop below. for( round=1; roundNumberOfRounds; round++ ) { SubBytes( (AesState*)Block ); ShiftRows( (AesState*)Block ); MixColumns( (AesState*)Block ); AddRoundKey( round, Context, (AesState*)Block ); } // The last round is given below. // The MixColumns function is not here in the last round. SubBytes( (AesState*)Block); ShiftRows( (AesState*)Block); AddRoundKey( Context->NumberOfRounds, Context, (AesState*)Block ); } //////////////////////////////////////////////////////////////////////////////// // AesDecryptInPlace // // Performs an AES decryption of one block (128 bits) with the AesContext // initialised with one of the functions AesInitialise[n]. The decryption is // performed in place. //////////////////////////////////////////////////////////////////////////////// void AesDecryptInPlace ( AesContext const* Context, // [in] uint8_t Block [AES_BLOCK_SIZE] // [in out] ) { uint32_t round = 0; // Add the First round key to the state before starting the rounds. AddRoundKey( Context->NumberOfRounds, Context, (AesState*)Block ); // The first NumberOfRounds-1 rounds are identical. for( round=(Context->NumberOfRounds-1); round>0; round-- ) { InvShiftRows( (AesState*)Block ); InvSubBytes( (AesState*)Block ); AddRoundKey( round, Context, (AesState*)Block ); InvMixColumns( (AesState*)Block ); } // The MixColumns function is not here in the last round. InvShiftRows( (AesState*)Block ); InvSubBytes( (AesState*)Block ); AddRoundKey( 0, Context, (AesState*)Block ); }